If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-12r=0
a = 4; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·4·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*4}=\frac{0}{8} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*4}=\frac{24}{8} =3 $
| 6x-3=9-30x | | 10y-2=7y+15 | | -4(-5+5x)=80 | | 22=4x+12 | | X-8=2x-58=x+15 | | 4(4-3b)=112 | | 15+0.5m=25+0.2m | | 29(t-938)=986 | | 128=3x+140 | | -4(-5+5x)=-52 | | 308=7(6x+8) | | -4x+10=5 | | 5-2(x+2)=2(-2x+6) | | 4x=12=158 | | 25(u-974)=600 | | 8x-67+9x-76=96 | | 3x-41=12x+4 | | 2(x+10)=(3x-8 | | 0=6x+8x | | 0=6x+-8x | | –5−2v=9−4v | | y+(y/14+3/14)4=-3 | | 27v+52=241 | | 145x+433=36 | | 6/7p-3=1 | | 15-2x=25-7x | | -5(1+4n)=95 | | 19-3=17x+11 | | -4+20u=6 | | (9x)/5+2x=1 | | 5+5z=5z+5 | | 63+4y+(3y+12)=180 |